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ABSTRACT

Quadratic Poisson tensors of the Dufour–Haraki classification read as a

sum of an r-matrix induced structure twisted by a (small) compatible

exact quadratic tensor. An appropriate bigrading of the space of formal

Poisson cochains then leads to a vertically positive double complex. The

associated spectral sequence allows to compute the Poisson–Lichnerowicz

cohomology of the considered tensors. We depict this modus operandi,

apply our technique to concrete examples of twisted Poisson structures,

and obtain a complete description of their cohomology. As richness of

Poisson cohomology entails computation through the whole spectral se-

quence, we detail an entire model of this sequence. Finally, the paper

provides practical insight into the operating mode of spectral sequences.

1. Introduction

It is easily seen that any quadratic Poisson tensor of the Dufour–Haraki classi-

fication (DHC), [DH91], reads

(1) Λ = ΛI + ΛII = aY23 + bY31 + cY12 + ΛII ,
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where a, b, c ∈ R, and the Yi are linear, mutually commuting vector fields (Yij =

Yi ∧ Yj), and where ΛII is, as ΛI , a quadratic Poisson structure. This entails,

of course, that ΛI and ΛII are compatible, i.e. that [ΛI , ΛII ] = 0, where [., .]

is the Schouten bracket. Except for structure 10 of the DHC, where ΛII =

(3b + 1)(y2 − 2xz)∂23 (∂23 = ∂x2
∂x3

= ∂y∂z), the second Poisson structure is

always Koszul-exact, i.e.

ΛII = Πφ := (∂1φ)∂23 + (∂2φ)∂31 + (∂3φ)∂12, φ ∈ S3R3∗.

In [Xu92], P. Xu has proved that any quadratic Poisson tensor of R3 reads

(2) Λ =
1

3
K ∧ E + Πf ,

where K is the curl of Λ, E the Euler field, and f ∈ S3R3∗.

In most cases (only cases 9 and 10 of the DHC are exceptional), term ΛI

of Equation (1), which is twisted by the exact term ΛII and is, as easily seen,

implemented by an r-matrix in the stabilizer gΛ ∧ gΛ, gΛ = {A ∈ gl(3, R) :

[A, Λ] = 0}, is given by

ΛI =
1

3
K ∧ E + ΠλD,

where λ ∈ R∗ and D = det(Y1, Y2, Y3), whereas

ΛII = Πφ = Πf−λD.

Hence, the difference between decompositions (1) and (2) is that in (1) the

biggest possible part of Λ is incorporated into the r-matrix induced structure,

whereas in (2) it is incorporated into the exact structure.

We prefer decomposition (1), since a general computing technique allows to

deal with the cohomology of ΛI , [MP06], and ΛII vanishes in many cases.

In most of the cases where the small exact tensor ΛII does not vanish, the

decomposition

∂Λ :=[Λ, .] = [ΛI , .] + [ΛII , .] =: ∂ΛI
+ ∂ΛII

,

∂2
ΛI

=∂2
ΛII

= ∂ΛI
∂ΛII

+ ∂ΛII
∂ΛI

= 0

leads to a vertically positive double complex and the corresponding spectral

sequence allows to deduce bit by bit the cohomology of Λ from that of ΛI .

In Section 2, we show how twisted r-matrix induced tensors generate ver-

tically positive double complexes. As richness of Poisson cohomology entails

computation through the whole associated spectral sequence, we detail a com-

plete model of the sequence in Section 3. Section 4 contains the computation
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of the cohomology of tensor Λ4 of the Dufour–Haraki classification. More pre-

cisely, Subsection 4.1 provides the second term of the spectral sequence, i.e. the

cohomology of the r-matrix induced part Λ4,I of Λ4, which is accessible to the

general cohomological technique developed in [MP06]. After some preliminary

work in Subsections 4.2 and 4.3, we are prepared to compute, in Subsection 4.4,

through the entire spectral sequence, see Theorem 1. As we aim at the extrac-

tion of “true results”, we are obliged to detail all the isomorphisms involved in

the theory of spectral sequences and to read our upshots through these isomor-

phisms. Hence, in particular, a study of the limiting process in the sequence

and of the reconstruction of the cohomology, precedes, in Subsection 4.5.1, the

concrete description of the cohomology of twisted structure Λ4, see Theorem 2

in Subsection 4.5.2, and of twisted tensor Λ8, Theorem 3 in Subsection 5.

The description of the main features of the cohomology of r-matrix induced

Poisson structures has been given in [MP06]. The tight relation between Casimir

functions and Koszul-exactness of these Poisson tensors is recalled in Subsec-

tion 4.1, see (10) (a generalization can be found in Subsection 4.3, see (11)).

Since our r-matrix induced Poisson structures are built with infinitesimal Pois-

son automorphisms Yi, see (1), the wedge products of the Yi constitute a priori

“privileged” cocycles. The associative graded commutative algebra structure

of the Poisson cohomology space now explains part of the cohomology classes.

The second and third term of this cohomology space contain, in addition to the

just mentioned wedge products of Casimir functions and infinitesimal automor-

phisms Yi, non-bounding cocycles the coefficients of which are, in a broad sense,

polynomials on the singular locus of the considered Poisson tensor. The “weight

in cohomology” of the singularities increases with closeness of the Poisson struc-

ture to Koszul-exactness. The appearance of some “accidental Casimir-like”

non-bounding cocycles completes the depiction of the main characteristics of

the cohomology.

If the r-matrix induced structure is twisted by an exact quadratic tensor, the

aforementioned spectral sequence constructs little by little the cohomology of

Λ from that of ΛI . In the examined cases, the basic Casimir CI of ΛI is the

first term of the expansion by Newton’s binomial theorem of the basic Casimir

C of Λ. Beyond the emergence of systematic conditions on the coefficients of

the powers Ci, i ∈ N, and the methodic disappearance of monomials on the

singular locus of ΛI , the main impact on Poisson cohomology of twist ΛII is

the (partial) passage from first term CI to complete expansion C, a change that
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takes place gradually for all powers of these Casimirs, as we compute through

the spectral sequence.

2. Vertically positive double complex

2.1. Definition. Let (K, d) be a complex, i.e. a differential space, made up by

a graded vector space K =
⊕

n∈N
Kn and a differential d : Kn → Kn+1 that

has weight 1 with respect to this grading. Assume that each term Kn is itself

graded,

Kn =
⊕

r,s∈N,r+s=n

Krs,

so that K =
⊕

r,s∈N
Krs is bigraded. We will refer to grading K =

⊕

n∈N
Kn

as the diagonal grading. Let p, q ∈ N, p + q = n. The differential d : Kpq →
⊕

r,s∈N,r+s=n+1 Krs induces linear maps

dab : Kpq → Kp+a,q+b (a, b ∈ Z, a + b = 1),

such that

d =
∑

a,b∈Z,a+b=1

dab.

If dab = 0, ∀b < 0 (resp., dab = 0, ∀a < 0), the preceding complex is a ver-

tically positive double complex (VPDC) (resp. a horizontally positive

double complex (HPDC)). Vertically positive and horizontally positive double

complexes are semi-positive double complexes. A complex that is simulta-

neously a VPDC and a HPDC is a double complex (DC) in the usual sense.

We filter a VPDC (resp., a HPDC) using the horizontal filtration (resp.,

vertical filtration)

hKp =
⊕

r∈N,s≥p

Krs (resp., vKp =
⊕

r≥p,s∈N

Krs).

These filtrations are compatible (in the usual sense) with the diagonal grading

and differential d. Moreover, they are regular, i.e. Kp∩Kn = 0, ∀p > n (equally

well for Kp =hKp and Kp =vKp), and verify K0 = K and K+∞ = 0.

The (convergent) spectral sequence (SpecSeq) associated with this graded

filtered differential space is extensively studied below. Let us stress that, in the

following we prove several general results on spectral sequences, which we could

not find in literature. In order to increase the reader-friendliness of our paper
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and to avoid scrolling, we chose to give these upshots in separate subsections

that directly precede those where the results are needed.

2.2. Application to twisted r-matrix induced Poisson structures.

We will now associate a VPDC to twisted r-matrix induced Poisson tensors.

Let

Λ = ΛI + ΛII = aY23 + bY31 + cY12 + Πφ

be as in (1).

Set Yi = ℓij∂j , ℓij ∈ R3∗ (we use the Einstein summation convention) and

D = det ℓ = det(ℓij) ∈ S3R3∗. If L ∈ gl(3,S2R3∗) is the matrix of algebraic

(2× 2)-minors of ℓ, we have ∂i =
Lji

D
Yj . The formal Poisson cochain space P is

made up by the 0−, 1−, 2−, and 3−cochains

C0 =
σ

D
, C1 =

σ1

D
Y1 +

σ2

D
Y2 +

σ3

D
Y3,(3)

C2 =
σ1

D
Y23 +

σ2

D
Y31 +

σ3

D
Y12, C3 =

σ

D
Y123,

where σ, σ1, σ2, σ3 ∈ R[[x1, x2, x3]] and where σ, ℓijσi, Lijσi are divisible by

D (for any j; 3-cochains do not generate any divisibility condition). In order

to understand these results, note first that, if L ∈ gl(3,S4R3∗) denotes the

matrix of algebraic (2 × 2)-minors of L, we have L = (detL)L̃−1 and L =

(det ℓ)ℓ̃−1. The last equation entails that detL = (det ℓ)2 and that L−1 = 1
det ℓ

ℓ̃.

Hence, it follows from the first equation that L = (det ℓ)ℓ = Dℓ. Let now

C2 = σ1∂23 +σ2∂31 +σ3∂12 be an arbitrary 2-cochain. Since its first term reads

σ1∂23 =
σ1

D2
Lj2Lk3Yjk =

σ1

D2
(L11Y23 + L21Y31 + L31Y12)(4)

=
σ1

D
(ℓ11Y23 + ℓ21Y31 + ℓ31Y12) ,

its is clear that any 2-cochain can be written as announced. Conversely, the

first term of any 2-vector C2 = σ1

D
Y23 + σ2

D
Y31 + σ3

D
Y12 reads

σ1

D
Y23 =

σ1

D
ℓ2jℓ3k∂jk =

σ1

D
(L11∂23 + L12∂31 + L13∂12) .

Thus, such a 2-vector C2 is a formal Poisson 2-cochain if and only if Lijσi is

divisible by D for any j. The proofs of the statements concerning 0-, 1-, and

3-cochains are similar.

Hence, If we replace the standard basic vector fields ∂i by the Yi, the cochains

assume, roughly speaking, the shape
∑

fY, where f is a function and Y is a
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wedge product of basic fields Yi. Then the Lichnerowicz-Poisson coboundary

operator ∂ΛI
= [ΛI , ·] is just

(5) ∂ΛI
(fY) = [ΛI , fY] = [ΛI , f ] ∧ Y.

More precisely, the coboundary operator associated with ΛI is given by

(6) [ΛI , C
0] = ∇C0, [ΛI , C

1] = ∇∧ C1, [ΛI , C
2] = ∇.C2, and [ΛI , C

3] = 0,

where ∇ =
∑

i Xi(·)Yi, X1 = cY2 − bY3, X2 = aY3 − cY1, X3 = bY1 − aY2, and

where the RHS have to be viewed as notations that give the coefficients of the

coboundaries in the Yi-basis. For instance, [ΛI , C
2] = (

∑

i Xi(
σi

D
))Y123.

Of course, the formal power series σ, σ1, σ2, σ3 in (3) read

∑

J∈N3

cJXJ =
∞
∑

j1=0

∞
∑

j2=0

∞
∑

j3=0

cj1j2j3x
j1
1 xj2

2 xj3
3 (cj1j2j3 ∈ R).

The degrees j1, j2, j3 ∈ N and the cochain degree c ∈ {0, 1, 2, 3} induce

a 4-grading of the formal Poisson cochain space P of polyvector fields with

coefficients in formal power series. Let us emphasize that the degrees ji are

read in the numerators σ of the decomposition C =
∑

σ
D

Y. They are tightly

related with the r-matrix induced nature of ΛI and were basic in the method

developed in [MP06]. In the following we use the degrees r = j1 + j2 + c and

s = j3 (depending on the considered Poisson tensor, other degrees could be

used, but the preceding ones encompass the majority of twisted structures)

that generate a bigrading of P , P =
⊕

r,s∈N
Prs. When defining the diagonal

degree n = r + s, we get a graded space

P =
⊕

n∈N

Pn,Pn =
⊕

r,s∈N,r+s=n

Prs.

These degrees differ from those defined in [Vai05] on foliated manifolds (M, F ),

for arbitrary smooth coefficients, by means of a normal bundle H of the foliation,

such that TM = H ⊕ F .

We now determine the weights of the coboundary operators ∂ΛI
and ∂ΛII

with

respect to r and s. Actually D is an eigenvector of the basic fields Yi, hence of

the fundamental fields Xi, YiD = λiD, XiD = µiD, λi, µi ∈ R. Indeed, since

πλD = λ(∂1D ∂23 +∂2D ∂31 +∂3D ∂12), it follows from (4) (take σj = λ∂jD and

its cyclic permutations) that

πλD =
λ

D
(Y1D Y23 + Y2D Y31 + Y3D Y12) .
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But πλD is part of ΛI and is, more precisely, of type (1), i.e. reads

πλD = l1Y23 + l2Y31 + l3Y12

(l1, l2, l3 ∈ R). Hence,

YiD =
li

λ
D =: λiD, for all i ∈ {1, 2, 3}.

In view of (3) and (6), the degrees j1, j2, j3 of the ΛI -coboundary ∂ΛI
C of any

cochain C depend only on the values Xi (σ/D) of the fundamental linear fields

Xi for an arbitrary formal power series σ =
∑

J cJXJ . Since

Xi

( σ

D

)

=
∑

J

cJ

1

D
(Xi − µi id)XJ ,

it is clear that ∂ΛI
preserves the total degree t = j1 + j2 + j3.

In the following, we focus on the first twisted quadratic Poisson structures

that appear in the DHC, i.e. on classes 4, 8, and 11, see [DH91]. Let us recall

that

Λ4 = ayz∂23 + axz∂31 +
(

bxy + z2
)

∂12 = aY23 + aY31 + bY12 +
z3

D
Y12

= Λ4,I + Λ4,II ,

a 6= 0, b 6= 0, Y1 = x∂1, Y2 = y∂2, Y3 = z∂3, D = xyz,

Λ8 =
(a + b

2
(x2 + y2) ± z2

)

∂12 + axz∂23 + ayz∂31 = aY23 +
a + b

2
Y12 ±

z3

D
Y12

= Λ8,I + Λ8,II ,

a 6= 0, b 6= 0, Y1 = x1∂1 + x2∂2, Y2 = x1∂2 − x2∂1, Y3 = x3∂3, D = (x2 + y2)z,

Λ11 =
(

ax2 + bz2
)

∂12 + (2a + 1)xz∂23 = Y23 + aY12 + b
z3

D
((3a + 1)Y12 + Y23)

= Λ11,I + Λ11,II ,

a 6= −1
3 , b 6= 0, Y1 = E , Y2 = x∂2, Y3 = (3a + 1)z∂3, D = (3a + 1)x2z.

Owing to the above remarks, it is obvious that ∂Λi,I
, i ∈ {4, 8, 11}, preserves the

partial degree p = j1 + j2 (and, as aforementioned, the total degree t). Hence,

its weight with respect to (r, s) is (1, 0):

d′ := d10 := ∂Λi,I
: Prs → Pr+1,s (i ∈ {4, 8, 11})

(dependence on i omitted in d′ and d10).
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As for the weight of ∂Λi,II
, i ∈ {4, 8, 11}, with respect to (r, s), let us first recall

that, if f and g are some functions, and if X and Y denote wedge products of

Y1, Y2, Y3 with (non-shifted) degrees α and β respectively, we have

(7) [fX, gY] = f [X, g] ∧ Y + (−1)αβ−α−βg[Y, f ] ∧ X.

Of course, the RHS of the preceding equation is a linear combination of terms of

the type fYi(g)Z or gYi(f)Z, where Z is a wedge product of Y1, Y2, Y3 of degree

α + β − 1. It follows that ∂Λi,II
Cc, i ∈ {4, 8, 11}, Cc ∈ P , is a formal series of

terms of the type
[z3

D
X,

XJ

D
Y

]

.

Any such term is a linear combination of terms of the type

z3

D
Yi

(

XJ

D

)

Z and
XJ

D
Yi

(

z3

D

)

Z.

As D is an eigenvector of Yi, this entails that coboundary ∂Λi,II
Cc has the form

∂Λi,II
Cc =

∑

∑

K cKXK

D2
Z,

where in each term k1 + k2 = j1 + j2 and k3 = j3 + 3, and where the degree of

wedge product Z is α+β− 1 = c+1. When dividing the preceding numerators

by D (see above), we find that the weight of ∂Λi,II
with respect to (r, s) is

(−1, 2) :

d′′ := d−12 := ∂Λi,II
: Prs → Pr−1,s+2 (i ∈ {4, 8, 11})

(dependence on i omitted in d′′ and d−12).

Finally, (P , ∂Λi
), i ∈ {4, 8, 11}, endowed with the previously mentioned grad-

ings

P =
⊕

n∈N

Pn,Pn =
⊕

r,s∈N,r+s=n

Prs

and the differential

d := ∂Λi
= ∂Λi,I

+ ∂Λi,II
= d′ + d′′ = d10 + d−12,

is a VPDC. We will compute the cohomology H(Λi) = H(P , d) using the Spec-

Seq associated with this VPDC (see above).
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3. Model of the spectral sequence associated with a VPDC

As mentioned above, a VPDC, a HPDC, and a DC can canonically be viewed

as regular filtered graded differential spaces. Hence, a SpecSeq (two, for any

DC) is associated with each one of these complexes.

In order to introduce notation, let us recall that, if (K, d, Kp, K
n) is any

(regular, i.e. Kp ∩ Kn = 0, ∀p > n) filtered (subscripts) graded (superscripts)

differential space (in our work p and n can be regarded as positive integers),

the associated SpecSeq (Er , dr) (r ∈ N) is defined by

Epq
r = Zpq

r /(Zp+1,q−1
r−1 + Bpq

r−1),

where Zpq
r = Kp ∩ d−1Kp+r ∩ Kp+q and Bpq

r = Kp ∩ dKp−r ∩ Kp+q are the

spaces of “weak cocycles” and “strong coboundaries” of order r in Kp ∩ Kp+q,

and

dr : Epq
r ∋ [zpq

r ]Epq
r

→ [dzpq
r ]Ep+r,q+1−r

r
∈ Ep+r,q+1−r

r .

In the following, we also use the vector space isomorphism

σr : Epq
r+1 → Hpq(Er, dr),

which assigns to each [zpq
r+1]Epq

r+1
, z

pq
r+1 ∈ Zpq

r+1 ⊂ Zpq
r , the dr-cohomology class

[[zpq
r+1]Epq

r
]dr

, [zpq
r+1]Epq

r
∈ Epq

r ∩ ker dr. For more detailed results on spectral

sequences, we refer the reader to [Cle85], [God52], [CE56], [Vai73], etc. In these

monographs, a model for the SpecSeq associated with a (HP)DC is partially

depicted up to r = 2. It is well-known that spectral sequences are particularly

easy to use, if many spaces Epq
2 (or Epq

r (r > 2)) vanish. Due to richness of Pois-

son cohomology, this lacunary phenomenon is less pronounced in our setting.

Since we have to compute through the whole SpecSeq, we need the complete

description of the entire model of the SpecSeq (Er, dr) (r ∈ N) associated with

a VPDC.

So consider an arbitrary VPDC and let Gpq(K) (p, q ∈ N) be the term of

degree (p, q) of the bigraded space associated with the filtered graded space K.

It is clear that the mapping

I0 : Epq
0 = Kp ∩ Kp+q/Kp+1 ∩ Kp+q = Gpq(K) ∋

[

z
pq
0 =

q
∑

i=0

zq−i,p+i

]

E
pq
0

→ zqp ∈ Kqp,
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where zrs (in the following, all Latin characters with double superscript, as

well) is an element of Krs (whereas German Fraktur characters with double

superscript, such as z
pq
0 , do not refer to the bigrading of K), is an isomorphism

of bigraded vector spaces (i.e., a vector space isomorphism that respects the

bigrading). It is easily seen that, when reading d0 through this isomorphism,

we get the compound map

d0 = I0d0I
−1
0 = d10.

Thus I0 : (E0, d0) → (K, d0) is an isomorphism between bigraded differential

spaces, and induces an isomorphism

I0♯ : Hpq(E0, d0) ∋ [[zpq
0 =

q
∑

i=0

zq−i,p+i]Epq
0

]d0

→ [zqp]d0
∈ Hpq(K, d0) =: 0Hpq(K) = 0Hq(K∗p)

of bigraded vector spaces, where the last space is the q-term of the cohomology

space of (K∗p, d0 = d10). Hence, the bigraded vector space isomorphism

I1 = I0♯σ0 : Epq
1 ∋ [zpq

1 =

q
∑

i=0

zq−i,p+i]Epq
1

→ [[zpq
1 ]Epq

0
]d0

→ [zqp]d0
∈ 0Hq(K∗p).

We now verify once more straightforwardly that differential d1 read on model
0H(K) is induced by d01, i.e., that

d1 = I1d1I
−1
1 = d01♯.

Finally,

I2 = I1♯σ1 : Epq
2 ∋ [zpq

2 =

q
∑

i=0

zq−i,p+i]Epq
2

→ [[zpq
2 ]Epq

1
]d1

→ [[zqp]d0
]d1

∈1Hp(0Hq(K))

is an isomorphism of bigraded vector spaces. As for the sense of the last

space, note that (0Hq(K) =
⊕

p
0Hq(K∗p), d1) is a complex. Observe now

that the inverse I−1
2 is less straightforward than I−1

0 and I−1
1 . Indeed, if

[[zqp]d0
]d1

∈1 Hp(0Hq(K)), representative zqp is generally not a member of Zpq
2 .

However, since the considered class makes sense,

d10zqp = 0, d01zqp + d10zq−1,p+1 = 0,



Vol. 165, 2008 POISSON COHOMOLOGY 391

where zq−1,p+1 ∈ Kq−1,p+1. Thus, z
pq
2 := zqp + zq−1,p+1 ∈ Zpq

2 and

I−1
2 [[zqp]d0

]d1
= [zpq

2 ]Epq
2

.

So

d2[[z
qp]d0

]d1
= I2[dz

pq
2 ]Ep+2,q−1

2

= [[d−12z
qp + d01z

q−1,p+1]d0
]d1

.

The preceding results extend those given in [Vai73] (for a HPDC). They can

easily be adapted to the most frequently encountered situations where only

some terms dab of d do not vanish.

In the following, we complete the description of the SpecSeq associated with

a VPDC, assuming that d = d10 + d−12 := d′ + d′′. This hypothesis entails that

d′2 = d′′2 = d′d′′ + d′′d′ = 0, i.e. that d′ and d′′ are two anticommuting differ-

entials. Hereafter, we denote by rH(.) (r ∈ N) the cohomology of differential

d2r and by [.]r the corresponding classes. Moreover, we will deal with strongly

triangular systems of type

d′zqp = 0(E0)

d′′zqp + d′zq−2,p+2 = 0(E1)

. . .

d′′zq−2(k−2),p+2(k−2) + d′zq−2(k−1),p+2(k−1) = 0.(Ek−1)

Note that when solving such a system, we prove at each stage that some

d′-cocycle is actually a d′-coboundary. We refer to this kind of system using

the notation S(zqp; k) or S(k; zq−2(k−1),p+2(k−1)) depending on the necessity to

emphasize the first or the last unknown or entry of an ordered solution.

Proposition 1: The spectral sequence associated to a VPDC with differential

d = d10 + d−12 = d′ + d′′ admits the following model. The model of E0,

isomorphisms I0 and I−1
0 , and differential d0 are the same as above. For any

r ∈ {1, 2, . . .},

(i) The map

I2r−1 : Epq
2r−1 ∋ [zpq

2r−1 =

q
∑

i=0

zq−i,p+i]Epq
2r−1

→ [[[zqp]0]1 . . .]r−1 ∈ r−1Hpq(r−2H(. . . (0H(K))))

is a bigraded vector space isomorphism. Its inverse I−1
2r−1 associates to

any RHS-class the LHS-class with representative z
pq
2r−1 =

∑r−1
i=0 zq−2i,p+2i,
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where (zqp, . . . , zq−2(r−1),p+2(r−1)) is any solution of system S(zqp; r).

Furthermore, d2r−1 = 0.

(ii) The model of Epq
2r and the corresponding isomorphisms I2r and I−1

2r

coincide with those pertaining to Epq
2r−1. Moreover,

(8) d2r[[[z
qp]0]1 . . .]r−1 = [[[d′′zq−2(r−1),p+2(r−1)]0]1 . . .]r−1,

where zq−2(r−1),p+2(r−1) is the last entry of an arbitrary solution of

S(zqp; r).

Proof. It is easier to prove an extended version of Proposition 1. Indeed, let us

complete assertions (i) and (ii) by

(iii) Existence (resp., vanishing) of a class [[[zqp]0]1 . . .]r−1 is equivalent with

existence of at least one solution of system S(zqp; r) (resp., with existence of

zq−1,p and of zq+1,p−2
i , i ∈ {1, . . . , r − 1}, which induce systems S(i; zq+1,p−2

i )

with solution, such that

zqp + d′zq−1,p + d′′
r−1
∑

i=1

zq+1,p−2
i = 0.)

The proof is by induction on r. Observe first that the assertions are

valid for r = 1 (see above). Assume now that all items hold for r ∈

{1, . . . , ℓ−1}. Proceeding as above, we easily show that I2ℓ−1 := I2(ℓ−1)♯σ2(ℓ−1)

is the appropriate bigraded vector space isomorphism. In order to determine

I−1
2ℓ−1, take any RHS-class [[[zqp]0]1 . . .]ℓ−1.

Let us first prove assertion (iii). Existence of class [[[zqp]0]1 . . .]ℓ−1 is equiv-

alent to existence of class [[[zqp]0]1 . . .]ℓ−2 (itself equivalent to existence of at

least one solution

zq−2j,p+2j (0 ≤ j ≤ ℓ − 2)

for S(zqp; ℓ − 1), by induction) and condition

d2(ℓ−1)[[[z
qp]0]1 . . .]ℓ−2 = 0.

Using the induction assumptions, we see that the last condition is equivalent,

first with

[[[d′′zq−2(ℓ−2),p+2(ℓ−2)]0]1 . . .]ℓ−2 = 0,

then with existence of

zq−2(ℓ−1),p+2(ℓ−1)
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and

z
q−2(ℓ−2),p+2(ℓ−2)
i (1 ≤ i ≤ ℓ − 2),

which implement systems S(i; z
q−2(ℓ−2),p+2(ℓ−2)
i ) with solution, say

zq−2j,p+2j
i (1 ≤ ℓ − i − 1 ≤ j ≤ ℓ − 2),

such that

(9) d′′
(

zq−2(ℓ−2),p+2(ℓ−2) +

ℓ−2
∑

i=1

z
q−2(ℓ−2),p+2(ℓ−2)
i

)

+ d′zq−2(ℓ−1),p+2(ℓ−1) = 0.

Assume now that all this holds and define new zq−2j,p+2j (0 ≤ j ≤ ℓ − 1). For

each j, take just the sum of the old zq−2j,p+2j and of all existing zq−2j,p+2j
i .

These new zq−2j,p+2j form a solution of S(zqp; ℓ). Note first that for j ∈

{0, ℓ− 1}, the old and new zq−2j,p+2j coincide. Hence, the last equation (Eℓ−1)

of S(zqp; ℓ) is nothing but (9). Moreover, it is easily checked that Equations

(Eℓ−2), . . . , (E0) are also verified. Conversely, if S(zqp; ℓ) has a solution, the

successive classes [zqp]0, [[z
qp]0]1, . . . , [[[z

qp]0]1 . . .]ℓ−1 are actually defined. It

suffices to note that d0z
qp = 0 and that, by induction,

d2r[[[z
qp]0]1 . . .]r−1 = [[[d′′zq−2(r−1),p+2(r−1)]0]1 . . .]r−1

= −[[[d′zq−2r,p+2r]0]1 . . .]r−1

= 0,

for any r ∈ {1, . . . , ℓ − 1}.

As for the second part of (iii), note that a class [[[zqp]0]1 . . .]ℓ−1 vanishes if

and only if there is z
q+2(ℓ−1)−1,p−2(ℓ−1)
ℓ−1 that generates a system

S(z
q+2(ℓ−1)−1,p−2(ℓ−1)
ℓ−1 ; ℓ − 1)

with solution, say

z
q+2(ℓ−j−1)−1,p−2(ℓ−j−1)
ℓ−1 (0 ≤ j ≤ ℓ − 2),

such that

[[[zqp]0]1 . . .]ℓ−2 = −d2(ℓ−1)[[[z
q+2(ℓ−1)−1,p−2(ℓ−1)
ℓ−1 ]0]1 . . .]ℓ−2

= −[[[d′′zq+1,p−2
ℓ−1 ]0]1 . . .]ℓ−2.

But, by induction, [[[zqp + d′′zq+1,p−2
ℓ−1 ]0]1 . . .]ℓ−2 = 0 if and only if there are

zq−1,p and zq+1,p−2
i (1 ≤ i ≤ ℓ − 2), which induce systems S(i; zq+1,p−2

i ) with
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solution, such that

zqp + d′′zq+1,p−2
ℓ−1 + d′′

ℓ−2
∑

i=1

zq+1,p−2
i + d′zq−1,p = 0.

Hence the conclusion.

We now return to items (i) and (ii). For any RHS-class [[[zqp]0]1 . . .]ℓ−1 ∈
ℓ−1Hpq(ℓ−2H(. . . (0H(K)))), the corresponding system S(zqp; ℓ) admits, as just

explained, at least one solution zq−2j,p+2j (0 ≤ j ≤ ℓ − 1). Set

z
pq
2ℓ−1 :=

ℓ−1
∑

j=0

zq−2j,p+2j .

As dz
pq
2ℓ−1 = d′′zq−2(ℓ−1),p+2(ℓ−1) ∈ Kq−2ℓ+1,p+2ℓ, we see that z

pq
2ℓ−1 ∈ Zpq

2ℓ−1 =

Kp ∩d−1Kp+2ℓ−1∩Kp+q. Hence I−1
2ℓ−1. As d2ℓ−1[z

pq
2ℓ−1]Epq

2ℓ−1
∈ Ep+2ℓ−1,q−2ℓ+2

2ℓ−1 ,

it is clear that d2ℓ−1 = 0. Thus, the statement concerning the model of Epq
2ℓ and

the isomorphisms I2ℓ and I−1
2ℓ is obvious. Finally, as d2ℓ[z

pq
2ℓ ]Epq

2ℓ
∈ Ep+2ℓ,q−2ℓ+1

2ℓ ,

we get

d2ℓ[[[z
qp]0]1 . . .]ℓ−1 = [[[d′′zq−2(ℓ−1),p+2(ℓ−1)]0]1 . . .]ℓ−1.

Remark: Result (8) can be rephrased as d2r =
(

(−1)r−1d′′(d′−1d′′)r−1
)

♯
, for

any r ∈ {1, 2, . . .}.

4. Formal cohomology of Poisson tensor Λ4

As aforementioned, we use the just depicted SpecSeq associated with the above

detailed VPDC implemented by the twisted r-matrix induced Poisson structure

Λ4.

4.1. Computation of the second term of the SpecSeq. In this section,

we give the second term E2 ≃ 0H(P) of the SpecSeq. Note that 0H(P) is the for-

mal Poisson cohomology of d0 = d′ = d10 = ∂Λ4,I
. As already elucidated in the

Introduction, we came up with decomposition (1), since the cohomology of ∂ΛI

is always accessible by the technique proposed in [MP06]. Hence, cohomology

space 0H(P) can be obtained (quite straightforwardly) by this modus operandi.

Let us emphasize that our results are in accordance, with our comments in

[MP06], as well as with similar upshots in [Mon02,2], regarding the tight re-

lation between Casimir functions and Koszul-exactness or “quasi-exactness”,
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the appearance of “accidental Casimir-like” non-bounding cocycles, and the in-

crease of the “weight in cohomology” of the singularities, with closeness of the

considered Poisson structure to Koszul-exactness.

If b/a ∈ Q∗, we denote by (β, α) ∼ (b, a), α ∈ N∗, the irreducible representa-

tive of b/a. Remember that, for b/a ∈ Q∗
+, a quasi-exact structure

(10) Λ = a∂1(pq)∂23 + a∂2(pq)∂31 + b∂3(pq)∂12,

p = p(x, y), q = q(z), exhibits the basic Casimir pαqβ, see [MP06]. Furthermore,

we set D = xyz, D′ = xy, and write AαY3, α ∈ N∗, instead of D′αz−1Y3 =

D′α∂3, and
⊕

ij . . . Yij instead of . . . Y23 + · · · + Y31 + · · · + Y12. Remark also

that the algebra of polynomials of the algebraic variety of singularities of Λ4,I

is R[[x]]⊕R[[y]]⊕R[[z]], where it is understood that term R is considered only

once.

The following proposition is now almost obvious.

Proposition 2:

1. If b
a
∈ Q∗

+, the algebra of Λ4,I -Casimirs is Cas(Λ4,I) =
⊕

i∈N
RD′αizβi

and the cohomology space 0H(P) is given by

E2 ≃ 0H(P)

=Cas(Λ4,I) ⊕
⊕

i

Cas(Λ4,I)Yi ⊕
⊕

ij

Cas(Λ4,I)Yij ⊕ Cas(Λ4,I)Y123

⊕ R[[z]]∂12 ⊕ R[[z]]∂123

⊕







R[[x]]∂23 ⊕ R[[y]]∂31 ⊕ (R[[x]] ⊕ R[[y]])∂123, if b = a

0, otherwise

2. If b
a
∈ R∗ \ Q∗

+, we have Cas(Λ4,I) = R and

E2 ≃ 0H(P)

= Cas(Λ4,I) ⊕
⊕

i

Cas(Λ4,I)Yi ⊕
⊕

ij

Cas(Λ4,I)Yij ⊕ Cas(Λ4,I)Y123

⊕







RAαY3 ⊕Aα(RY23 + RY31) ⊕ RAαY123, if (−1, α) ∼ (b, a)

0, otherwise

⊕ R[[z]]∂12 ⊕ R[[z]]∂123
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Remark: Due to the properties, used below, of the preceding (non-bounding)

Λ4,I -cocycles, we classify these representatives as follows:

1. Representatives of type 1: All cocycles with cochain degree 0, the

1- and 2-cocycles that contain a Casimir (maybe the accidental Casimir

Aα), except cocycles Cas(Λ4,I)Y12

2. Representatives of type 2: All 3-cocycles, all cocycles with singularities,

and cocycles Cas(Λ4,I)Y12

4.2. Prolongable systems S(zqp; r). Since computation through the whole

SpecSeq will shape up as inescapable, we need the below corollary of Proposi-

tion 1. It allows to short-circuit the process of computing the successive terms

of the sequence. Let us specify that in the following a system of representa-

tives of a space of classes is made up by representatives that are in one to one

correspondence with the considered classes.

Corollary 1: If, for some fixed r ∈ N∗, all the classes [[[zqp]0]1 . . .]r−1 in

model space r−1H(r−2H(. . .0H(K))), appendant on a SpecSeq associated to a

VPDC with differential d = d10+d−12 = d′+d′′, give rise to an enlarged system

S(zqp; s) with solution, for some fixed s ≥ r, the following upshots hold:

1. all the differentials d2r−1, d2r, . . . , d2s−1 vanish;

2. differential d2s is defined by

d2s[[[z
qp]0]1 . . .]r−1 = [[[d′′zq−2(s−1),p+2(s−1)]0]1 . . .]r−1;

3. any system (zqp) of representatives of r−1H(r−2H(. . .0H(K))) is in one

to one correspondence with the system (zpq
2s :=

∑s−1
k=0 zq−2k,p+2k) of

representatives of E2s.

Proof. Induction on s.

4.3. Forecast. In order to increase readability of our paper, some intuitive

advisements are necessary.

The basic idea of the theory of spectral sequences is that computation of the

successive terms Er ≃ H(Er−1, dr−1) (r ∈ N∗) allows to detect their inductive

limit E∞, which, for a convergent sequence, is isomorphic with the graded space

G(H) associated to the sought-after filtered cohomology space H . We then hope

to be able to reconstruct this filtered space H from the corresponding graded

space G(H). Let us recall that space H is of course the cohomology of the
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filtered graded differential space associated with the SpecSeq. Hence, in our

case, H = H(Λ4). It is clear that the successive cohomology computations

take place on the concrete model side. To determine H , we have to pull our

results back to the theoretical side, and more precisely to read them through

the numerous isomorphisms involved.

Actually the application of spectral sequences presented in this work, provides

a beautiful insight into the operating mode of a SpecSeq. Since, roughly speak-

ing, the “weak cocycle condition” in the definition of Zpq
r (resp., the “strong

coboundary condition” in the definition of Bpq
r ) converges to the usual cocycle

condition (resp., the usual coboundary condition), we understand that, when

passing from one estimate Er−1 of H to the next approximation Er, we obtain

an increasing number of conditions on our initial weak non-bounding cocycles

of E2 and an increasing number of bounding cocycles. Moreover, when we com-

pute through the SpecSeq, the aforementioned pullbacks, see Proposition 1, add

up solutions of crescive systems,

z
pq
2r = zqp +

r−1
∑

k=1

zq−2k,p+2k.

The next remarks aim at anticipation of these systems. The reader is already

familiar with Casimirs of exact and quasi-exact structures. When taking an

interest in slightly more general quasi-exact tensors,

(11) Λ = a∂1((p + r)q)∂23 + a∂2((p + r)q)∂31 + b∂3((p + r)q)∂12,

a, b ∈ R∗, p = p(x, y), q = q(z), r = r(z), it is natural to ask which polynomials

of the type (p + c r)nqm, c ∈ R, n, m ∈ N, (n, m) 6= (0, 0), are Casimir func-

tions. It is easily checked that structure Λ4 has this form and that the Casimir

conditions read am = bn and 3bn = ca(2n + m). So, for b/a ∈ Q∗
+, the basic

Casimir C of Λ4 and its powers Ci, i ∈ N, are given by

Ci =
(

p +
3b

2a + b
r
)α i

qβ i =
(

D′ +
z2

2a + b

)α i

zβ i

= D′α izβ i +
α i
∑

k=1

∁kα i

(2a + b)k
D′α i−kzβ i+2k.

These powers Ci (non-bounding cocycles of H = H(Λ4)) will be obtained, while

we compute through the SpecSeq, from those, D′α izβ i, of the Casimir of Λ4,I
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(non-bounding cocycles of E2 ≃ 0H(P)). Hence, the above-quoted solutions

and corresponding systems S(D′α izβ i, α i + 1).

4.4. Computation through the SpecSeq. In view of the preceding aware-

ness, it is natural to set

Zqic−2k,pi+2k =
∁kαi

(2a + b)k
D′αi−kzβi+2k















Aik

BikY1 + CikY2 + DikY3 ,

EikY23 + FikY31

where k ∈ {0, 1, . . . , α i} and Aik, Bik, Cik, Dik, Eik, Fik ∈ R. More precisely,

if b/a ∈ Q∗
+, we have (b, a) ∼ (β, α), α, β ∈ N∗, and we ask that i ∈ N, if

b/a ∈ R∗ \ Q∗
+, we choose i = 0, and if moreover (b, a) ∼ (β, α) = (−1, α),

α ∈ N∗, we also accept the value i = 1, but add the conditions A10 = B10 =

C10 = 0. We define (qic, pi) := (2α i + 2 + c, β i + 1), where c ∈ {0, 1, 2} denotes

the cochain degree, so that the double superscript in the LHS is the bidegree

(r, s) = (j1 + j2 + c, j3) of the RHS.

Observe that the Zqic,pi are exactly the representatives of type 1 of the classes

of E2 ≃ 0H(P).

Lemma 1: For any admissible exponent i and any cochain degree c ∈ {0, 1, 2},

the cochains Zqic−2k,pi+2k, k ∈ {0, 1, . . . , α i}, constitute a solution of system

S(Zqic,pi ; α i + 1), if and only if, for any k ∈ {0, 1, . . . , α i − 1},

(C0) Ai,k+1 = Aik, if c = 0,

(C1) Bi,k+1 + Ci,k+1 =
(αi − k + 1) (Bik + Cik) − 2Dik

αi − k
and Di,k+1 = Dik,

if c = 1,

(C2) Ei,k+1 − Fi,k+1 =
αi − k + 1

αi − k
(Eik − Fik) , if c = 2.
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Furthermore,

d′′Zqic−2αi,pi+2αi

= d′′Z2+c,pi+2αi

=















0, for c = 0,

(2a + b)−αi (Bi,αi + Ci,αi − 2Di,αi) z2+i(2α+β)∂12, for c = 1,

(2a + b)−αi (Ei,αi − Fi,αi) z3+i(2α+β)∂123, for c = 2,

is a d′-coboundary if and only if the coefficient vanishes.

Proof. We must compute the differentials d′ = ∂Λ4,I
= [Λ4,I , .] and d′′ =

∂Λ4,II
= [D−1z3Y12, .] =: [fX, .] on the Zqic−2k,pi+2k. These cochains have

the form gY := D−1XJY := D−1D′nzm
∑

j rjYj , n, m ∈ N, rj ∈ R, where the

degree c of wedge product Yj is independent of j. Hence, (7) gives

d′′(gY) = [fX, gY] = f [X, g] ∧ Y + (−1)cg[Y, f ] ∧ X.

On the other hand, (5) and (6) entail d′(gY) = [Λ4,I , gY] = [Λ4,I , g] ∧ Y =
∑

ℓ Xℓ(g) Yℓ∧Y, where X1 = bY2−aY3, X2 = aY3−bY1, X3 = a(Y1−Y2). Since

Yℓ

(

XJ/D
)

= (jℓ − 1)XJ/D

(same notations as above), we get

d′(gY) = g (b(n − 1) − a(m − 1)) (Y1 − Y2) ∧ Y.

In particular, we recover the result d′Zqic,pi = ig(bα − aβ)(Y1 − Y2) ∧ Y = 0,

and, when setting a = 0, b = 1,Y = 1, we find

[X, g] = g(n − 1)(Y1 − Y2).

We now compute

d′′Zqic−2k,pi+2k, k ∈ {0, 1, . . . , α i},

and

d′Zqic−2(k+1),pi+2(k+1), k ∈ {0, 1, . . . , α i − 1}.

(1) c = 0.

It follows from the preceding equations that

d′′Zqi0−2k,pi+2k = ∁kαi(α i − k)Aik(2a + b)−kD−1D′αi−kz3+βi+2k(Y1 − Y2)

and that
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d′Zqi0−2(k+1),pi+2(k+1) =

− ∁k+1
αi (k + 1)Ai,k+1(2a + b)−kD−1D′αi−kz3+βi+2k(Y1 − Y2).

Since for any p, n ∈ N, p < n, we have ∁pn(n − p) = ∁p+1
n (p + 1), the

sum of these coboundaries vanishes if and only if Ai,k+1 = Aik, for any

k ∈ {0, 1, . . . , α i − 1}. For k = α i, we get

d′′Zqi0−2αi,pi+2αi = d′′Z2,pi+2αi = 0.

(2) c = 1.

A short computation shows that

d′′Zqi1−2k,pi+2k

=∁kαi(2a + b)−kD−1D′αi−kz3+βi+2k[−Dik(α i − k)Y23 − Dik(α i − k)Y31

+ ((Bik + Cik)(α i − k + 1) − 2Dik)Y12]

and that

d′Zqi1−2(k+1),pi+2(k+1)

= −∁k+1
αi (k + 1)(2a + b)−kD−1D′α i−kz3+β i+2k

× [−Di,k+1Y23 − Di,k+1Y31 + (Bi,k+1 + Ci,k+1)Y12].

If k ∈ {0, 1, . . . , α i − 1}, the sum of these coboundaries vanishes if and

only if

Bi,k+1 + Ci,k+1 =
(αi − k + 1) (Bik + Cik) − 2Dik

αi − k
and Di,k+1 = Dik.

Furthermore, for k = α i, the first of the preceding “coboundary equa-

tions” provides the announced result for d′′Zqi1−2αi,pi+2αi. As R[[z]]∂12

is part of the cohomology of d0 = d′, this d′′-coboundary is a d′-

coboundary if and only if its coefficient vanishes.

(3) c = 2.

We immediately obtain

d′′Zqi2−2k,pi+2k = ∁kαi(α i− k +1)(2a+ b)−kD−1D′αi−kz3+βi+2k(Eik −Fik)Y123

and

d′Zqi2−2(k+1),pi+2(k+1) =

− ∁k+1
αi (k + 1)(2a + b)−kD−1D′α i−kz3+β i+2k(Ei,k+1 − Fi,k+1)Y123.

Hence the announced upshots.
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Let us recall that the admissible values of i (and the potential conventions

on coefficients A10, B10, C10) depend on quotient b/a. Moreover, for b/a ∈

R∗ \ Q∗
+, (b, a) ≁ (−1, α), α ∈ N∗, we set α = 1 ∈ N∗. Actually, in this case, α

need not be defined beforehand, as it was systematically multiplied by i = 0.

The following theorem provides the complete description of the considered

SpecSeq.

Theorem 1: The even terms E2(n−1)α+4 = E2(n−1)α+6 = · · · = E2nα+2 (n ∈

N; for n = 0, this package contains only term E2) of the above defined SpecSeq

are canonically isomorphic (i.e. d2(n−1)α+4 = d2(n−1)α+6 = · · · = d2nα = 0) and

admit the below system of representatives:

1. All representatives of type 2 of E2 ∼ 0H(P), except

Rzi(2α+β)+2∂12 and Rzi(2α+β)+3∂123,

for all admissible i ∈ {0, 1, . . . , n − 1}.

2. All representatives of type 1 of E2 ∼ 0H(P), altered as follows:

• For all admissible i ∈ {n, n + 1, . . .},

Zqic,pi  

α n
∑

k=0

Zqic−2k,pi+2k,

where the coefficients Aik, Bik, Cik, Dik, Eik, Fik incorporated into

the terms of the RHS verify conditions (C0)− (C2) of Lemma 1 up

to k = α n − 1.

• For all admissible i ∈ {0, 1, . . . , n − 1},

Zqic,pi  



















(

D′ + z2

2a+b

)αi

zβiAi0, if c = 0,
(

D′ + z2

2a+b

)αi

zβi
(

Bi0(Y1 + 1
2Y3) + Ci0(Y2 + 1

2Y3)
)

, if c = 1,

D′αizβiEi0(Y23 + Y31), if c = 2.

Proof. The proof is by induction on n. For n = 0, Theorem 1 is obviously valid.

Assume now that it holds true for 0, 1, . . . , n − 1 (n ∈ N∗). We first transfer

the description of E2(n−2)α+4 = · · · = E2(n−1)α+2 to the concrete model side,

in order to compute d2(n−1)α+2. When having a look at the packages of terms

that are known to be isomorphic, we see that the only differentials (under

d2(n−1)α+2) that do not vanish are d2mα+2 (m ∈ {0, 1, . . . , n − 2}). Hence the
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target of vector space isomorphism

I2(n−1)α+2 : E2(n−1)α+2 → (n−2)α+1H((n−3)α+1H(. . .1H(0H(P)))),

which, as it appears from its general description, maps the system of E2(n−1)α+2-

representatives onto the system evidently made up by:

1. All representatives of type 2 of E2, except Rzi(2α+β)+2∂12 and

Rzi(2α+β)+3∂123, for all admissible i ∈ {0, 1, . . . , n − 2}.

2. All representatives of type 1 of E2, Zqic,pi , i admissible, c ∈ {0, 1, 2},

with, for all admissible i ∈ {0, 1, . . . , n− 2}, Bi0 + Ci0 = 2Di0, if c = 1,

and Ei0 = Fi0, if c = 2.

We now compute the cohomology of space ((n−2)α+1H(. . .0H(P)), d2(n−1)α+2).

If zqp is one of the representatives of the preceding system,

(12) d2(n−1)α+2[[z
qp]0 . . .](n−2)α+1 = [[d′′zq−2α(n−1),p+2α(n−1)]0 . . .](n−2)α+1,

where zq−2α(n−1),p+2α(n−1) is the last entry of an arbitrary solution of

S(zqp; α(n − 1) + 1).

The d′′-coboundary of any zqp of type 2 vanishes. This is obvious if

zqp is a 3-cochain or has the form Cas(Λ4,I)Y12 (as d′′ = [Λ4,II , .] =

[D−1z3Y12, .]). If zqp is a 2-cochain with singularities, e.g. D−1p(x)Y23,

where p(x) is a polynomial in x, we get d′′zqp = [D−1z3Y12, D
−1p(x)Y23] =

−z3p(x)D−2Y123 + z3p(x)D−2Y123 = 0. Hence, for any type 2 representative

zqp, system S(zqp; s) admits solution (zqp, 0, . . . , 0), for any s ∈ N∗ (S1, repre-

sentative extended by 0), and Coboundary (12) vanishes.

Let now zqp be a representative Zqic,pi of the first type. We know from

Lemma 1 that Zqic−2k,pi+2k, k ∈ {0, 1, . . . , α i}, with coefficients that verify

(C0)-(C2), is a solution of S(Zqic,pi ; α i + 1).

1. For any admissible i ∈ {n, n + 1, . . .}, this solution can be truncated

to a solution of S(Zqic,pi ; α n + 1) (S2, truncated standard solution).

Hence, Coboundary (12) vanishes.

2. If i is admissible in {0, 1, . . . , n − 2}, we have

Bi0 + Ci0 = 2Di0 and Ei0 = Fi0.

It then follows from (C1) and (C2) that the same relation holds for k =

α i, i.e. that Bi,α i + Ci,α i = 2Di,α i and Ei,α i = Fi,α i. This, however,

implies that d′′Zqic−2α i,pi+2α i = 0, so that system S(Zqic,pi ; α n + 1)
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admits an obvious solution (S3, standard solution extended by 0) and

that Coboundary (12) vanishes again.

3. If i = n − 1 is admissible,

d2(n−1)α+2[[Z
qn−1,c,pn−1 ]0 . . .](n−2)α+1 =

[[d′′Zqn−1,c−2α(n−1),pn−1+2α(n−1)]0 . . .](n−2)α+1.

In view of Lemma 1, this class vanishes for c = 0, and coincides, if c = 1

(resp., c = 2), up to a coefficient, with class

[[z(n−1)(2α+β)+2∂12]0 . . .](n−2)α+1

(resp., [[z(n−1)(2α+β)+3∂123]0 . . .](n−2)α+1).

The above depicted system of representatives of (n−2)α+1H(. . .0H(P))

shows that the preceding two classes do not vanish. Hence, the cocycle-

condition is equivalent with the annihilation of the mentioned coeffi-

cient, i.e. with

Bn−1,α(n−1) + Cn−1,α(n−1) = 2Dn−1,α(n−1)

(resp., En−1,α(n−1) = Fn−1,α(n−1)),

or, as already explained,

(13) Bn−1,0 + Cn−1,0 = 2Dn−1,0 (resp., En−1,0 = Fn−1,0).

It clearly follows that the space of d2(n−1)α+2-coboundaries is gener-

ated by the two just encountered non-vanishing classes. Hence, the

cohomology space (n−1)α+1H((n−2)α+1H(. . .0H(P))) has the same sys-

tem of representatives as its predecessor (n−2)α+1H(. . .0H(P)), but with

exclusions carried out and conditions on Bi0, Ci0, Di0, Ei0, Fi0 valid for

all admissible i ∈ {0, 1, . . . , n − 1}.

It now suffices to apply Corollary 1 to the cohomology space

(n−1)α+1H((n−2)α+1H(. . .0H(P))).

Observe first that (S1)–(S3) entail existence of a solution of S(zqp; α n + 1),

for all representatives zqp dissimilar from Zqn−1,c,pn−1 . But, as the coeffi-

cients of these last representatives—viewed as representatives of the preced-

ing d2(n−1)α+2-cohomology space—satisfy Conditions (13), the coboundaries

d′′Zqn−1,c−2α(n−1),pn−1+2α(n−1) vanish. So the previously met solution of
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S(Zqn−1,c,pn−1 ; α (n − 1) + 1) can be indefinitely extended by 0 (S4, standard

solution extended by 0). Finally, Corollary 1 is applicable for s = α n + 1.

Hence, spaces E2(n−1)α+4 = · · · = E2nα+2 coincide and we build, from

the known system zqp of representatives of (n−1)α+1H(. . .0H(P)), a system

of E2nα+2 by just summing-up the entries of any solutions of the systems

S(zqp; α n + 1). For any Zqic,pi , the coefficients of which verify

Bi0 + Ci0 = 2Di0 (c = 1) and Ei0 = Fi0 (c = 2),

the standard Zqic−2k,pi+2k, k ∈ {0, 1, . . . , α i}, are solution, see Lemma 1, of

S(Zqic,pi ; α i + 1), e.g. if we choose

Aik = Ai0 (c = 0), Bik = Bi0, Cik = Ci0, Dik = Di0 (c = 1), and(14)

Eik = Fik = 0 (c = 2, k 6= 0).

If we pull the concrete side representatives back to theoretical side represen-

tatives using these solutions, we exactly get, see S1–S4, the sought-after sys-

tem.

Remark: 1. We already observed previously the obvious fact that when

pulling RHS-representatives back, using different solutions of the stan-

dard system, we obtain equivalent LHS-representatives. These equiv-

alent LHS-representatives would implement cohomologous cocycles in

cohomology space H(Λ4). Choice (14) will induce in cohomology the

most basic possible cocycles.

2. Note also that in view of Theorem 1 and our conventions on coefficients

B10, C10, cocycle RAαY3 disappears from all spaces E2r, r ≥ 2α + 4.

4.5. Limit of the SpecSeq and reconstruction of the cohomology.

The limit of the SpecSeq can be guessed from Theorem 1. However, we already

stressed the importance of a careful reading of all results through the isomor-

phisms involved in the theory of spectral sequences. The proof of Theorem 1

shows for instance that the appropriate Casimir functions appear, when we pull

the RHS-representatives back to the LHS, i.e. read them through isomorphism

I−1
2(n−1)α+3. Hence, a precise description of the isomorphisms that lead now to

the cohomology of Λ4 is essential.

4.5.1. General results. Let us consider the SpecSeq associated with a (regular)

filtered graded differential space (K, d, Kp, K
n) and recall that the limit spaces
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Epq
∞ , Zpq

∞ , Bpq
∞ are defined exactly as spaces Epq

r , Zpq
r , Bpq

r , see Section 3, so that

Zpq
∞ and Bpq

∞ are the spaces of cocycles and coboundaries in Kp ∩Kp+q, respec-

tively. For any fixed p and q, regularity implies that the target space of the

restriction of dr to Epq
r vanishes, if r > q + 1. Thus, there is a canonical linear

surjective map ϑpq
r : Epq

r → Hpq(Er, dr) → Epq
r+1. For s ≥ r > q + 1, we define

θpq
rs := ϑpq

s−1 ◦ · · · ◦ ϑpq
r : Epq

r → Epq
s , and for r > q + 1, we set

(15) θpq
r : Epq

r ∋ [zpq
r ]Epq

r
→ [zpq

r ]Epq
∞

∈ Epq
∞ .

Due to regularity, the first two of the well-known inclusions

Zpq
∞ ⊂ Zpq

r , Zp+1,q−1
∞ ⊂ Zp+1,q−1

r−1 , and Bpq
r−1 ⊂ Bpq

∞

are actually double inclusions, and Zp+1,q−1
∞ + Bpq

r−1 ⊂ Zp+1,q−1
∞ + Bpq

∞ ⊂ Zpq
∞ .

Hence, map θpq
r is canonical, linear and surjective. It is known that space Epq

∞

together with the preceding linear surjections θpq
r is a model of the inductive

limit of the inductive system (Epq
r , θpq

rs). Consider now a first quadrant SpecSeq

(i.e., p, q ∈ N) and assume that K0 = K. For any p, q, the SpecSeq collapses at

r > sup(p, q + 1),

more precisely, Epq
r = Epq

∞ and θpq
r = id. Indeed, in this case, in addition to

the aforementioned double inclusions (r > q + 1), we now have also Bpq
r−1 =

Kp∩dKp+1−r ∩Kp+q = Kp∩dK0∩Kp+q = Bpq
∞ (r > p). Hence the announced

results.

The SpecSeq associated with any filtered graded differential space is conver-

gent in the sense that limit Epq
∞ is known to be isomorphic as a vector space

with term Gpq of the bigraded space G(H(K)), G for short, associated with the

filtered graded space H(K). Let us recall that the filtration of H(K) is induced

by that of K. More precisely, injection i : (Kp, d) → (K, d) is a morphism of

differential spaces and Hp := i♯H(Kp) ⊂ H(K) is the mentioned filtration of

H(K). In order to reduce notations, we denote the terms of the grading of

H(K) simply by Hn. It is a fact that the filtration and the grading of H(K)

are compatible and that filtration Hp is regular if its generatrix Kp is. Hence,

Hp =
⊕

q∈N
Hp∩Hp+q =:

⊕

q∈N
Hp+q

p . Finally, it is a matter of knowledge that

the isomorphism, say ι, between Gpq := Hp+q
p /Hp+q

p+1 and Epq
∞ is canonical,

(16) ι : Epq
∞ ∋ [zpq

∞]Epq
∞

→ [[zpq
∞]Hp+q

p
]Gpq ∈ Gpq.

We now reconstruct H(K) from G. Let us again focus on a first quadrant

SpecSeq associated with a (regular) filtered complex (K, d, Kp, K
n) (such that
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K0 = K). For any n ∈ N, we denote by Gn−j1,j1 , Gn−j2,j2 , . . . , Gn−jkn ,jkn ,

n ≥ j1 > j2 > · · · > jkn
≥ 0, the non-vanishing Gpq = Hp+q

p /Hp+q
p+1 , p + q = n.

Since H0 = H(K) and Hn
p = Hp ∩ Hn = 0, ∀p > n, it follows that

Hn = Hn
0 = · · · = Hn

n−j1
⊃ Hn

n−j1+1 = · · · = Hn
n−j2

⊃ Hn
n−j2+1 · · ·H

n
n−jkn

⊃ Hn
n−jkn +1 = · · · = Hn

n = 0.

Hence,

Hn/Hn
n−j2

= Gn−j1,j1 , . . . , Hn
n−jkn−1

/Hn
n−jkn

= Gn−jkn−1,jkn−1 , Hn
n−jkn

= Gn−jkn ,jkn .

However, if B/A = C, A a vector subspace of B, the sequence 0 → A
i
→ B

p
→

C → 0, is a short exact sequence of vector spaces. A short exact sequence in a

category is split if and only if kernel A admits in vector space B a complementary

subspace that is a subobject, or, alternatively, if and only if there is a right

inverse morphism χ : C → B of projection p. Of course, in the category of

vector spaces such a sequence is always split. If χ is a linear right inverse of p,

we have B = A ⊕ χ(C).

Let us now come back to our circumstances. If χ1, . . . , χkn−1 denote splittings

of the involved sequences, central extension Hn is given by

(17) Hn = χ1(G
n−j1,j1) ⊕ · · · ⊕ χkn−1(G

n−jkn−1,jkn−1) ⊕ Gn−jkn ,jkn .

It follows of course from Equation (17) that H(K) is—in this vector space

setting—isomorphic with G = G(H(K)). It is known that in the case of ring

coefficients, extension problems may prevent the reconstruction of H(K) from

G(H(K)).

4.5.2. Application to Poisson tensor Λ4. The next proposition provides a sys-

tem of representatives of the cohomology space of

Λ4 = ayz∂23 + axz∂31 + (bxy + z2)∂12 (a 6= 0, b 6= 0).

Remember that D′ = xy and Y1 = x∂1, Y2 = y∂2, Y3 = z∂3. If b
a
∼ β

α
∈ Q∗

+, we

define

Cas(Λ4) := ⊕i∈NR

(

D′ +
z2

2a + b

)α i

zβ i

and use the above introduced notation Cas(Λ4,I) =
⊕

i∈N
RD′α izβ i. If b

a
∈

R∗ \ Q∗
+, we set Cas(Λ4) := R and, as aforementioned, Aα = D′αz−1.



Vol. 165, 2008 POISSON COHOMOLOGY 407

Theorem 2: 1. If b
a
∈ Q∗

+, the cohomology of Λ4 is given by

E∞ ∼ G ∼ H(Λ4) = Cas(Λ4) ⊕ Cas(Λ4)
(

Y1 +
1

2
Y3

)

⊕ Cas(Λ4)
(

Y2 +
1

2
Y3

)

⊕ Cas(Λ4,I)(Y23 + Y31) ⊕ Cas(Λ4,I)Y12 ⊕ Cas(Λ4,I)Y123

⊕
⊕

k∈N\N (2α+β)+2

Rzk∂12 ⊕
⊕

k∈N\N (2α+β)+3

Rzk∂123

⊕







R[[x]]∂23 ⊕ R[[y]]∂31 ⊕ (R[[x]] ⊕ R[[y]])∂123, if b = a

0, otherwise

2. If b
a
∈ R∗ \ Q∗

+, we have

E∞ ∼ G ∼ H(Λ4)

= Cas(Λ4) ⊕ Cas(Λ4)
(

Y1 +
1

2
Y3

)

⊕ Cas(Λ4)
(

Y2 +
1

2
Y3

)

⊕ Cas(Λ4)(Y23 + Y31) ⊕ Cas(Λ4)Y12 ⊕ Cas(Λ4)Y123

⊕







⊕RAα(Y23 + Y31) ⊕ RAαY123, if (b, a) ∼ (−1, α)

0, otherwise

⊕







⊕

k∈N\{2,2α+1} Rzk∂12 ⊕
⊕

k∈N\{3,2α+2} Rzk∂123, if (b, a) ∼ (−1, α)
⊕

k∈N\{2} Rzk∂12 ⊕
⊕

k∈N\{3} Rzk∂123, otherwise

Proof. Fix a, b ∈ R∗ and take any representative of E2. Remember that

the representatives of type 1 are exactly the cochains Zqic,pi (i admissible,

c ∈ {0, 1, 2}). Moreover, we say that a representative of type 2 is critical if

it has the form Rzi(2α+β)+2∂12 or Rzi(2α+β)+3∂123 (i admissible). If the con-

sidered representative zqp is of type 2 and not critical (resp., of type 2 and

critical, of type 1), we choose n ∈ N such that 2nα + 2 > sup(p, q + 1) (resp.,

2nα + 2 > sup(p, q + 1, 2iα + 2)— hence, we have n − 1 ≥ i— 2nα + 2 >

sup(pi, qic + 1, 2iα + 2)). The system of representatives of E∞ ∼ G specified

in Theorem 2 arises now from Theorem 1 and from the canonical isomorphisms

(15) (condition: r > sup(p, q+1)) and (16). These representatives are represen-

tatives of bases of the non-vanishing Gpq. In order to compute H(K), it suffices

to build arbitrary splittings in keeping with Equation (17). Hence, it suffices to
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choose, for any class of any basis of the concerned Gpq, an arbitrary represen-

tative, e.g. the aforementioned one. It follows that H(K) admits exactly the

same representatives as E∞ ∼ G.

Remark: Hence, the twist makes a threefold impact on cohomology. When ap-

plying our computing device, see Theorem 1, we get, at each turn of the handle,

on the model level, roughly speaking, cocycle-conditions on the coefficients re-

lated with an additional power of the basic Casimir CΛ4,I
of Λ4,I , and we exclude

a supplementary pair of singularity-induced classes. These conditions appear in

cohomology as terms Yi or Yij with the same “Casimir-coefficient”. Eventually,

the cocycle-conditions allow to lift the mentioned accessory power of CΛ4,I
to

the real level as power of Casimir CΛ4
of Λ4 or, depending on cochain degree,

as power of Casimir CΛ4,I
. We know that such a lift is not unique and that two

different ones are cohomologous. It follows from Theorem 2 (resp., from the

proof of Theorem 1) that any term of Cas(Λ4)(Y23 +Y31) is a Λ4-cocycle (resp.,

can be chosen as lift of the corresponding term in Cas(Λ4,I)(Y23 + Y31), as well

as this term itself). So any term of Cas(Λ4)(Y23 + Y31) is cohomologous to

the analogous term in Cas(Λ4,I)(Y23 + Y31). Finally, the aforementioned proof

allows to see that Λ4,I -cocycle RAαY3 = RD′αz−1Y3, which is not a product of

two Λ4-cocycles, is a Λ4-cocycle if and only if its coefficient vanishes.

Let us have a look in the end at singularities. The singular locus of Λ4,I (resp.,

Λ4) is made up by the three coordinate axes (resp., the axis of abscissæ and

the axis of ordinates). Comparing the results of Proposition 2 and of Theorem

2, we see that the twist Λ4,II , which removes the z-axis from the singular locus,

cancels only part of the corresponding polynomials in cohomology. We already

observed in [MP06] that, for r-matrix induced tensors, some coefficients of non-

bounding 2- or 3-cocycles can just be interpreted as polynomials on singularities

via an extension of the polynomial ring of the singular locus. In the case of

twisted r-matrix induced structures, some of these polynomial coefficients are

simply not polynomials on singularities.
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5. Formal cohomology of Poisson tensor Λ8

We now describe the cohomology space of the twisted quadratic Poisson struc-

ture

Λ8 =

(

a + b

2
(x2 + y2) ± z2

)

∂12 + axz∂23 + ayz∂31 (a 6= 0, b 6= 0).

If we substitute c (resp., b) for −b (resp., (a + b)/2), tensor Λ8 reads

(18) Λ8 = b(x2 + y2)∂12 + (2b + c)xz∂23 + (2b + c)yz∂31 ± z2∂12.

Henceforth, we use parameters b and c. Assumptions a 6= 0, b 6= 0 are equiv-

alent with 2b + c 6= 0, c 6= 0. Moreover, the r-matrix induced part Λ8,I =

b(x2 + y2)∂12 + (2b + c)xz∂23 + (2b + c)yz∂31 of Λ8 is nothing but structure Λ7

with parameter a = 0, see [MP06, Section 9], so that term E2 ≃ H(Λ8,I) of the

spectral sequence follows from [MP06, Theorems 6,8,9].

Let us recall that the Yi stem from Λ8,I , i.e. from Λ7. Hence, Y1 = x∂1 + y∂2,

Y2 = x∂2−y∂1, Y3 = z∂3. We set D′ = x2+y2. Moreover, if b
c
∈ Q, b(2b+c) < 0,

we denote by (β, γ) ∼ (b, c) the irreducible representative of the rational number
b
c
, with positive denominator, β ∈ Z, γ ∈ N∗, and if b

c
∈ Q, b(2b + c) > 0,

(β, γ) ∼ (b, c) denotes the irreducible representative with positive numerator,

β ∈ N∗, γ ∈ Z∗.

Theorem 3: The terms of the cohomology space of Λ8 (see (18)) are given by

the following equations:

1. If b
c
∈ Q, b(2b + c) > 0,

H0(Λ8) = Cas(Λ8) = ⊕i∈N,γi∈2ZR

(

D′ ±
z2

3b + c

)(β+ γ
2
)i

zβ i ,

H1(Λ8) = Cas(Λ8,I)Y2 ⊕ Cas(Λ8)(Y1 + Y3) ,

H2(Λ8) = Cas(Λ8,I)Y12 ⊕ Cas(Λ8,I)Y23 ⊕
⊕

k∈N\N(3β+γ)+2

Rzk∂12 ,

H3(Λ8) = Cas(Λ8,I)Y123 ⊕
⊕

k∈N\N(3β+γ)+3

Rzk∂123 ,

where Cas(Λ8,I) = ⊕i∈N,γi∈2ZRD′(β+ γ
2
)izβi.

2. If b
c

/∈ Q or b
c
∈ Q, b(2b + c) < 0,

H0(Λ8) =Cas(Λ8) = R ,

H1(Λ8) =Cas(Λ8)Y2 ⊕ Cas(Λ8)(Y1 + Y3),
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H2(Λ8) =Cas(Λ8)Y12 ⊕ Cas(Λ8)Y23

⊕







⊕

k∈N\{2,γ−1} Rzk∂12, if (b, c) ∼ (−1, γ), γ ∈ {4, 6, 8, ...}
⊕

k∈N\{2} Rzk∂12, otherwise

⊕







RAγY23, if (b, c) ∼ (−1, γ), γ ∈ {4, 6, 8, ...}

0, otherwise ,

H3(Λ8) = Cas(Λ8)Y123

⊕







⊕

k∈N\{3,γ} Rzk∂123, if (b, c) ∼ (−1, γ), γ ∈ {4, 6, 8, ...}
⊕

k∈N\{3} Rzk∂123, otherwise

⊕







RAγY123, if (b, c) ∼ (−1, γ), γ ∈ {4, 6, 8, ....}

0, otherwise ,

where Aγ = D′ γ
2
−1z−1.

3. If b = 0,

H0(Λ8) = Cas(Λ8) = ⊕i∈NR

(

D′ ±
z2

c

)i

,

H1(Λ8) = Cas(Λ8,I)Y2 ⊕ Cas(Λ8)(Y1 + Y3) ,

H2(Λ8) = Cas(Λ8,I)Y12 ⊕ Cas(Λ8,I)Y23 ⊕
⊕

k∈N\{2N+2}

Rzk∂12 ,

H3(Λ8) = Cas(Λ8,I)Y123 ⊕
⊕

k∈N\{2N+3}

Rzk∂123 ,

where Cas(Λ8,I) =
⊕

i∈N
RD′i.
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